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Theoretically-derived molecular descriptors important in
human intestinal absorption
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Abstract

A quantitative structure–human intestinal absorption relationship was developed using artificial neural network
(ANN) modeling. A set of 86 drug compounds and their experimentally-derived intestinal absorption values used in
this study was gathered from the literature and a total of 57 global molecular descriptors, including constitutional,
topological, chemical, geometrical and quantum chemical descriptors, calculated for each compound. A supervised
network with radial basis transfer function was used to correlate calculated molecular descriptors with experimentally-
derived measures of human intestinal absorption. A genetic algorithm was then used to select important molecular
descriptors. Intestinal absorption values (IA%) were used as the ANN’s output and calculated molecular descriptors
as the inputs. The best genetic neural network (GNN) model with 15 input descriptors was chosen, and the
significance of the selected descriptors for intestinal absorption examined. Results obtained with the model that was
developed indicate that lipophilicity, conformational stability and inter-molecular interactions (polarity, and hydrogen
bonding) have the largest impact on intestinal absorption. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The oral route is the one most preferred for
systemic administration of drugs so it is important
that any new drug has good bioavailability.

Absorption from the gastrointestinal tract, as
well as penetration of other membrane barriers
may be passive or active. Passive transport is

governed by physico-chemical properties whereas
active transport involves specific binding of a
molecule to a binding site on a transport protein.
Attempts have been made to explain and predict
drug absorption from a variety of physico-chemi-
cal parameters [1–5]. Drugs must dissolve in the
gastrointestinal tract to be available to cross the
intestinal membrane. Dissolution is effected by
the aqueous solubility, ionizability (pKa) and
lipophilicity (octanol/water log P). Although
there are specialized membrane transport mecha-
nisms for natural cell substances and small polar
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molecules may simply diffuse across, most organic
compounds penetrate tissue cells as though the
boundaries were lipid in nature. Single physico-
chemical properties of drug molecules such as
lipophilicity can be roughly correlated to passive
drug transport across cell membranes, but only
for homologous series of compounds. Log P is
thus a crucial factor governing passive membrane
partitioning; an increase in log P enhances perme-
ability while reducing solubility.

There are 32 known human transporter
families, including the mitochondrial transporter
family (14 members), GABA transporter family
(13 members), amino acid permease family (eight
members), and the organic anion/cation trans-
porter family (eight members) [6]. The intestinal
oligopeptide transporter (cloned as Pept-1) plays a
major role in protein synthesis and drug therapy
[7]. Some transporter proteins (such as Pep T1)
pump solute into the cell, whereas others (such as
P-gp) work in the other direction. Studies of the
relationships between the chemical structure of
drugs (steric and electrostatic fields) and their
affinity for the small intestinal oligopeptide carri-
ers have shown that carrier permeability is sensi-
tive to composition, size and hydrophobicity of
the ligands [8].

In vivo animal studies and human ex vivo
intestinal absorption models have been used to
predict drug absorption [9]. These methods are
expensive, time consuming, and require a large
amount of sample. Moreover, these models pro-
duce variable results for structurally different
compounds. Drug permeability in cell cultures or
intestinal tissues has been shown to be a useful
predictor of drug absorption in vivo even when
drugs of different structural classes are studied
[10]. The most useful are CaCO-2 cells derived
from a human colon carcinoma cell line. Perme-
ability measurements are based on the rate of
appearance of the test compound in the receiver
compartment. The apical surface of the mono-
layer retains many characteristics of the intestinal
brush border and expresses functional transport
proteins [11] and metabolic enzymes [12,13]. Al-
though tissue and particular cell culture models
are better predictors of drug absorption than sin-
gle physico-chemical parameters, they are also

labour intensive and require actual compound
synthesis and absorption measurements. Thus, a
theoretical method that could predict absorption
with high precision would be of interest.

A goal in the design of this study was the
development of a Genetic Neural Network
(GNN) model to predict the degree of drug ab-
sorption from the gastrointestinal tract, depend-
ing on the calculated molecular descriptors. The
molecular structure of any molecule determines its
function. A change in a structure of a molecule
usually produces an associated change in its prop-
erties. Finding one or more molecular descriptors
that explain variations in biological activity has
resulted in the development of quantitative struc-
ture property relationships (QSPR). While some
molecular descriptors can be determined experi-
mentally, using computational methods to derive
them is much faster and more convenient. Such
relationships, once quantified, can be used to esti-
mate the properties of new drugs or hypothetical
drugs only from the sketch of their structure. The
GNN model uses artificial neural network (ANN)
to correlate activity with descriptors that are pre-
selected by a genetic algorithm (GA).

Recent investigations involving computational
neural networks and genetic algorithms serve as
examples of the application of the QSPR meth-
ods. Three-layer, feed-forward neural networks
have provided excellent results in several QSPR
studies. The genetic algorithm has been shown to
be very effective in performing descriptor selec-
tion. Wessel et al. [14] have developed a neural
network model consisting of six input neurons
(descriptors), four hidden neurons and one output
neuron (% of intestinal absorption). The six de-
scriptors were the NSB-number of single bonds,
SHDW-6-normalized 2D projection of the
molecule on YZ plane, CHDH-1-charge on do-
natable hydrogen atoms, SAAA-2-surface area of
hydrogen bond acceptor, SCAA-2-surface area×
charge of hydrogen bond acceptor and GRAV-3-
cube root of gravitation index. This study is also
focused on the prediction of human intestinal
drug absorption from molecular structure, but it
uses radial basis function (RBF) networks and
different molecular descriptors to build a model.
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1.1. Artificial neural network (ANN)

An artificial neural network is a biologically
inspired computer program designed to simulate
the way in which the human brain processes
information. ANNs are constituted from hun-
dreds of single processing elements (PE), artifi-
cial neurons. Each PE has weighted inputs,
transfer function and one output. PEs are con-
nected with coefficients (weights) which consti-
tute the neural structure and are organised in
layers, the input layer, the output layer, and the
hidden layers between them. Neural networks
gather their knowledge by detecting the patterns
and relationships in data and learn (or are
trained) through experience with appropriate
learning exemplars, not from programming. The
input layer neurons receive data from a data
file. The output neurons provide the ANN’s re-
sponse to the input data. Units in the input
layer do not process. They simply pass an out-
put value onto units in the second layer. Each
hidden or output unit has a number of incom-
ing connections from units in the preceding
layer. The weighted sum of the inputs comprises
the activation of the neuron. The activation sig-
nal is passed through an activation function
(also known as a transfer function) to produce a
single output of the neuron. Thus what is
learned in a hidden neurone is based on all the
inputs taken together. This hidden layer is the
place where the network learns interdependen-
cies in the model. Hidden neurons communicate
only with other neurons. They are part of the
large internal pattern that determines a solution
to the problem. PE is essentially an equation
which balance inputs and outputs. Transfer
functions for the hidden units are needed to in-
troduce nonlinearity into the network.

Multilayer perceptrons (MLPs) and radial ba-
sis function (RBF) networks are the two most
commonly used types of feed-forward network.
The only difference is the way in which hidden
units combine values coming from preceding
layers in the network. An MLP models the re-
sponse function using the composition of
sigmoid functions. A radial basis function

network (RBF) has a hidden layer of radial
units, each modeling a Gaussian response sur-
face. An MLP unit responds (non-linearly) to
the distance of points from the line of the sig-
moid projection; in a radial basis function net-
work units respond (non-linearly) to the distance
of points from the centre represented by the ra-
dial unit. The response surface of a single radial
unit is a Gaussian (bell-shaped) function, peaked
at the centre, and descending outwards.

MLP units are defined by their weights and
threshold, which together give the equation of
the defining line. In contrast, a radial unit is
defined by its centre point and radius. Since
these functions are non-linear, it is not necessary
to have more than one hidden layer to model
any shape of function.

2. Experimental

Neural Networks TM (StatSoft®) was used
for building the IA model. For calculating drug
properties from molecular structure Pallas 2.1
(Compu Drug Int.), ChemSketch 3.5 (ACD Inc.)
and CAChe Project leader Version 3.11 (Oxford
Molecular Ltd.) were used.

The set of 86 structurally different compounds
and their experimentally-derived intestinal ab-
sorption values (IA%) used in this study were
collected from the literature [14]. The absorption
values for 86 compounds were used as the
ANN’s output and 57 calculated molecular de-
scriptors as the inputs (Table 1). A set of 76
compounds was selected for training and testing
the ANNs and 10 compounds were used as an
external prediction set. Before each training run
the 76 compounds in the working data set were
split randomly into: the training set containing
67 data sets and nine testing (cross validation)
sets. Connections or units were eliminated dur-
ing training based on sensitivity reports and
overall quality of a particular subset of descrip-
tors.
A supervised network with back-propagation
learning rule and radial basis transfer function
was used.
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3. Results and discussion

3.1. Descriptor generation and analysis

A first step in this study was to calculate a
multitude of structural descriptors as mathemati-
cal representations of chemical structure. To de-
scribe physico-chemical structure, descriptors are
utilised that account for three aspects of the com-
pounds concerned, namely their hydrophobic,
electronic and steric effects. Hydrophobicity is
related to the ability of a compound to partition
through a membrane. Steric effects relate to their
ability to pass through a membrane or to bind to
a receptor site. Electronic effects may relate to
reactivity or metabolism. A total of 57 calculated
structure features including constitutional, topo-
logical, chemical, geometrical and quantum chem-
ical descriptors were calculated for each of the 60
compounds (Table 1). Connectivity and topologi-
cal descriptors were calculated directly from the
connection table representation of the structure
and employ methods drawn from mathematical
graph theory. Geometric descriptors were calcu-
lated from three-dimensional molecular models.
Electronic descriptors were derived from empirical
or molecular orbital calculations. ChemSketch
was used to calculate the composition, polariz-
ability, molecular weight, index of refraction and
surface tension. Quantum chemical and geometri-
cal descriptors were calculated using CAChe.
Once the molecular structures were encoded, the

genetic algorithm (GA) input selection was used
to select the subset of descriptors that best en-
coded the intestinal absorption.

3.2. Neural network analysis

The two forms of network analysis are cross
validation and sensitivity analysis. Both methods
were used during the training of the network. The
cross validation test set was used to determine the
level of generalization produced by the training
set. Training was stopped at each run when the
error in the test set began to rise.

The second form of network analysis computes
sensitivities of the network’s outputs with respect
to each of its inputs. ANNs compute the output
as a sum of non-linear transformations of linear
combinations of the inputs. Sensitivity reports
show the sensitivity of the output variables, as a
percentage, to changes in the input variables. If
the direction of the change in the output variable
is always the same as the change in investigated
descriptor then the average sensitivity is positive.
The set of percentages reveals the most significant
inputs and the effect that a change in a particular
input has on output. In order to reduce the
amount of input data and select the best ANN,
architecture pruning [15] was applied, this being
similar to backward elimination in stepwise re-
gression. The sensitivity analysis feature was used
to discard the insignificant portions of data and to
focus the training on that which was most impor-

Table 1
Calculated molecular descriptors

Class Molecular descriptor

Constitutional Chemical composition (weight percent of C, H, O, N, S, Cl, F in molecular mass), Atom count (C, H,
N, S, Cl, F, S, O), Functional group counts (amine, amide, carbonyl, carboxyl, ether, hydroxyl,descriptors
methyl, methylene, nitro, sulfide and sulfone)

Topological Kier and Hall connectivity indices (Chi0–Chi2) and Valence connectivity indices (Chi0V–Chi2V),
Topological shape indices (Kappa0-2)descriptors

Chemical descriptors Molar refractivity, pKa, pKa
0, log P, log D, Molecular mass, Parachor, Surface tension, Polarizability,

Density, Dielectric constant
Geometrical Solvent accessible surface area (SASA), Molar volume

descriptors
Quantum chemical Dipole moment, HOMO and LUMO energies, Steric energy, Heat of formation, Total energy,

descriptors Minimum energy, Electron affinity
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Table 2
Relative sensitivity of IA% on selected molecular descriptors

Descriptor Average sensitivity

log P +0.13735
Electron affinity +0.10797
Density −0.09419

−0.08855Hydrogen atom count
Steric energy +0.08448

−0.08287�OH
−0.06539HOMO
−0.05903LUMO
+0.05777Minimum energy
−0.05390�COOH
+0.04591Dielectric constant

�CH3 +0.03869
+0.03791�CO

Dipole −0.02931
−0.01524Parachor

reduced to 57, 48, 36, 28, 23, 19, 15, 13, 10 and
finally to eight inputs with sensitivity greater than
0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 and 4%,
respectively.

The training set was used to train the network
and the testing set used to monitor over-training.
The testing and training set RMS errors were used
to evaluate the overall quality of a particular
subset of descriptors and network topology
(Table 2).

A 15-descriptor, nonlinear GNN model has
been developed for the estimation of IA% values
for a data set of 85 drugs. The model has 15
selected inputs with sensitivity greater that 3%,
one hidden layer with four neurons and percent of
intestinal absorption as the output neuron, thus
forming a 15-8-1 architecture. Other architectures
were examined, but they produced poorer quality
neural network models (Table 3). The training
and testing RMS errors are 0.59 and 0.90, respec-
tively. The strength of the correlation between
selected descriptors and gastrointestinal absorp-
tion is measured by the quality of the external
prediction set. With the RMS error of 0.42 and
high correlation between predicted and experi-
mental values (R2=0.802), the external predic-
tion set ensures the quality of the model (Fig. 1).

The relative importance of selected descriptors
is evaluated by sensitivity analysis and is shown in
Table 2. Classic gastrointestinal absorption stud-
ies suggested that molecules pass through a mem-

tant. Inputs that produced low sensitivity values
were considered insignificant and were removed
from the network. This also reduced the size and
complexity of the network and thus training time,
and improved the network performance.

Initially, a neural network consisting of 62 in-
puts (molecular descriptors), one hidden layer and
one output neuron (target, IA (%)) was used. The
number of inputs and hidden neurones were opti-
mized. Connections or units were eliminated dur-
ing training based on sensitivity report. Following
a sensitivity analysis, the number of inputs was

Table 3
The influence of different topology on the ANN’s performancea

ANNsb ISN RMStr RMStest ERR(%) S.D.

57 0.13057-20-1 0.170 0.188 27.98 0
27.240.1720.190 0.0050.1124848-18-1

36 0.105 0.18236-14-1 0.211 33.63 0.01
34.2628 0.0150.105 0.164 0.25428-12-1

23 0.105 0.13823-10-1 0.189 27.93 0.02
19-9-1 19 0.100 0.152 0.205 27.72 0.025

0.1420.1410.1051515-8-1 0.0325.01
0.11013-3-1 0.03525.010.1420.15513

10-2-1 0.105 0.15510 0.373 37.45 0.04
8-4-1c 50.248 0.094 0.154 0.344

a N, number of inputs; IS, input sensitivity; ERR(%)= [(predicted−actual)/actual)]×100.
b Number of inputs–hidden neurons–outputs.
c ANN model developed by Wessel et al. [14].
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Fig. 1. Predicted IA(%) values for the validation data set obtained with developed RBF model (15/8/1) and GNN model [14] versus
experimentally derived IA(%) values. RBF: experimental IA(%)=5.5+0.837×predicted(%); GNN: experimental IA(%)=19.5+
0.719×predicted(%).

brane only as uncharged species [16,17]. However,
most biologically active molecules are at least
partially ionized at biological pH values and ab-
sorption could be influenced by the membrane
penetration of the neutral form and by the recep-
tor binding of the ionized form. Hence, ionization
equilibrium may influence the total concentration
of drug available for passive diffusion or binding
to the receptor and active transport. However, pH
progressively increases throughout the length of
the gastrointestinal tract and solubility and thus
absorbability of an ionizable compound will vary
accordingly. These considerations suggest reasons
for the poor quantitative relationship between
pKa and bioavailability [18]. The most important
chemical descriptors were log P, density, parachor
and dipole moment. The octanol–water partition
coefficient (log P) is frequently used in quantita-
tive structure–activity relationship studies as a
measure of the lipophilic character of the
molecules. Among physico-chemical determinants
of drugs, lipophilicity is approximately correlated
to passive transport across cell membranes and
the ability of a compound to partition through a
membrane [19]. Calculated log P can be roughly
correlated with drug absorption, but only for
homologous series of compounds as it does not
account for intramolecular interactions. For ex-
ample, intramolecular hydrogen bonding [20] can
dramatically influence absorption properties.

The density of a substance is the ratio of its
mass to its volume. Molecular size is limiting on
the absorption through membranes in general.
Molecular mass is often used as molecular size
descriptor. Molar density estimates diffusion co-
efficients for hydrocarbon systems [21] and has
effects on the enzyme targeting capability and cell
binding properties [22]. Compounds with high
molar density are not well absorbed from the
gastrointestinal tract due to increase in molecular
mass.

Parachor [23] is an additive physical property
of a substance related to its molar volume, and is
determined by the kind and the number of atoms
in a molecule as well as their manner of arrange-
ment and binding. It is essentially a molecular
volume with the fourth root of the surface tension
as a correcting factor. It is evident, from the
sensitivity report, that an increase in the parachor
decreases absorption. Small lipid insoluble sub-
stances penetrate cell membranes via the pores
between aqueous phases on both sides of the
membrane. The rate of such passive diffusion
depends on the size of the pores, the molecular
volume of the solute and the solute concentration
gradient.

Dipole moment is the measure of polarity of
the molecule and intramolecular electronic effect.
Electronic effects may relate to molecular reactiv-
ity or metabolism [24]. The greater the dipole
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moment and the smaller the steric energy of a
molecules, the greater its activity. Drugs with high
dipole moments are less well absorbed.

Quantum chemical descriptors can be used to
establish the conformational stability, chemical
reactivity and inter-molecular interactions. They
include thermodynamic properties (system ener-
gies) and electronic properties (LUMO or HOMO
energy). Energy was calculated for an optimized
conformation with the most stable geometry (min-
imum energy) using molecular or quantum me-
chanics to determine bond strengths, atomic
hybridizations, partial charges, and orbitals from
the positions of the atoms and the net charge. The
Lowest Unoccupied Molecular Orbital (LUMO)
energy level is a property of electronic structure
and represents the electron affinity of a molecule
or its reactivity as an electrophile. The energy
difference between the Highest Occupied Molecu-
lar Orbital (HOMO) and the LUMO energies is
related to the minimum energy needed to excite
an electron in the molecule. Increases in electron
acceptor properties will increase binding affinity.
Good nucleophiles are those where the electrons
reside in high-lying orbitals and good elec-
trophiles are those where the LUMO is low-lying.

Electron affinity [25] incorporates electron cor-
relation and relaxation, whereas LUMO does not,
and is also a measure of the reduction in activity.
Electrophiles are often reducing agents. Since liv-
ing organisms function at an optimum redox po-
tential range, it is assumed that redox potential of
compounds of certain type correlate with biologi-
cal effect. Increase in molecular reactivity also
increases metabolic processes. The access of a
drug to the sites of oxidation–reduction reactions
is hindered by the complex competing events dur-
ing absorption. Therefore, correlation between re-
dox potential and biological activity is important
only for compounds with similar structure and
physical properties. Compounds with lower
LUMO and HOMO energy (good electrophiles)
and higher electron affinity have a higher rate of
absorption.

Charge-transfer and hydrophobic interactions
of the lateral substituents have indicated the im-
portance of steric parameters within nonplanar
congeners. For a given molecule, the atoms will

adjust their positions by stretching and bending
bonds away from standard values so as to pro-
duce a minimum energy configuration. Deviation
from those standard values results in steric energy
that influences the relative stability and thus reac-
tivity of molecules. Higher steric energy and mini-
mum energy were found to promote absorption.
The increase in activity roughly parallels the de-
crease in water solubility and the increase in lipid
solubility (log P) that may be associated with the
availability of the compound for penetration
through the membrane barrier.

Dielectric setting, i.e. the change in charge rear-
rangement of the molecule accompanies a change
in hydrogen bond strength [26]. The energy of the
molecular interaction is affected by its dielectric
constant and the RBF model shows that an in-
crease in dielectric constant promotes intestinal
absorption.

The most important constitutional descriptors
were found to be the methyl, hydroxyl, carbonyl
and carboxyl group count. Functional groups ex-
hibit a characteristic reactivity and chemical be-
havior when present in a compound. Certain
functional groups are important in the specific
interaction between a drug and transporter recep-
tor. Undoubtedly, the functional group accounts
for many of the dipole–dipole, dipole-induced
dipole and hydrogen bond interactions of any
molecule. For each molecule, the orientation of
the functional groups influences the dipole (elec-
trostatic) moment value, and this descriptor can
be used as a selector of active conformations.
Properties associated with hydrogen bonding
should be kept to a minimum to promote high
absorption. Since the presence of hydroxyl groups
facilitates hydrogen bonding, an increase in the
number of hydroxyl groups on a molecule will
decrease its absorption. High charge-transfer
properties (dipole, carbonyl group) hinder absorp-
tion. Dipole–dipole interactions are related to the
dipole moment of a whole molecule or a part of a
molecule, such as a functional group, e.g. car-
bonyl. In many cases, experimental work and
structure/activity studies have suggested that the
charged group is essential for biological activity.
An increase in the number of carboxyl groups
decreases intestinal absorption, suggesting the for-
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mation of non-absorbable complexes or hydrogen
bonding interaction. The methyl group is an elec-
tron donating group that enhances non-polar sol-
ubility. The presence of methyl groups on the
terminal carbon atom of a conjugated chain stabi-
lizes the positive charge of the main chain. Methyl
substitutions have substantial effects on proton
affinity and increase intestinal absorption.

The regression coefficients of the IA(%) values
predicted with the RBF model versus experimen-
tally-derived values were then compared with
those obtained from the GNN model [14] (Table
4). Since nine data sets were selected randomly as
the test set out of 76 data sets and 10 were used as
the external validation set at the beginning of
each neural net analysis, the values of r2 vary with
each run depending on the components included
in the training set. Each run was repeated five
times to find the best value of r2.

A strong correlation between the predicted ver-
sus experimentally-derived IA(%) values (up to
R2=0.857) for the validation data set was ob-
tained with the model developed by Wessel et al.
[14]. However, the slope was significantly different
from unity, indicating proportional error, and the
intercept was different from zero. A proportional
systematic error leads to a change in a slope, so
that the difference between slope and unity gives
an estimate of the proportional error. A constant
systematic error shows up in a value of the inter-
cept different from zero. As expected, we did not
obtain the higher correlation (R2=0.802) for the
best RBF model (15/8/1). However, the slope was
not significantly different from unity (t=0.49)
and the intercept was not significantly different
from zero (t=1.11), indicating that the method
does not show proportional error or method bias
(Fig. 1).

4. Conclusion

A 15-descriptor (Table 3) nonlinear computa-
tional neural network model has been developed
for the estimation of HIA% values for a data set
of 86 drugs. The training set RMS error was 0.590
and the testing set RMS error was 0.900. Based
on the RMS errors of the training and testing

sets, it is clear that a link between structure and
IA(%) does exist. The strength of the link is
measured by the quality of the external prediction
set. With the RMS error of 0.425 and a good
visual plot, the external prediction set ensures the
quality of the model. The QSPR model described
here does not require experimental parameters
and could potentially provide useful prediction of
gastrointestinal absorption of new drugs. How-
ever, the data set employed here is highly biased
towards well absorbed compounds and contains
compounds that are subjected to various active
transport mechanisms. A number of transport
proteins are responsible for solute transport in
vivo. Although not all of these are present in the
intestine, it is likely that a model based on 76
compounds (the training and testing sets) would
be sufficient to describe transport by all possible
routes. Furthermore, uncritical use of data sets
compiled from the literature is associated with the
risk of possibly erroneous values.

Until recently, drug properties could be de-
duced only empirically. Hence developing a new
synthesis or improving a drug product required a
lot of experimental work and a fair amount of
trial and error. The QSPR model described here
does not require experimental work and could
potentially provide useful predictions of the rate
and amount of gastrointestinal absorption of new
drugs.

We expect that this research will suggest new
therapeutic strategies for efficient oral drug deliv-
ery. Since the cost of drug development is many
times larger than the cost of drug discovery, pre-
dictive methodologies that might aid the selection
of orally bioavailable drug candidates could be
very valuable. This approach can be applied to
estimate the bioavailability of purely hypothetical
compounds as there would be no need for experi-
mental determinations or synthesis. Quantum
chemistry and molecular modeling techniques
provide insight into which aspects of a molecular
structure influence intestinal absorption. Such in-
sight can facilitate the systematic approach to the
design of new molecules with more desirable
properties. It also has the advantage that it can be
applied to new chemical entities before they are
even developed.



S. Agatono6ic-Kustrin et al. / J. Pharm. Biomed. Anal. 25 (2001) 227–237 235

Table 4
Predicted IA(%) values obtained with developed RBF model (15/8/1) and GNN model [14] versus experimentally-derived IA(%)
values

Recovery GNNIA(%) RecoveryRBF

Training and testing data sets
* 0.0014.82 *0.00Gentamycin

0.00 0.00Cromolyn 0.000.50 0.00
0.00 4.820.00 209.57Olsalazin 2.30

Ganciclovir 4.53 119.24 6.21 163.423.80
257.98 0.0012.90 0.00Cefuroxime 5.00
189.91 20.99Chlorothiazide 161.4613.00 24.69
118.08 16.0517.71 107.00Mannitol 15.00

78.7334.50 228.19 36.00 104.35Nadolol
236.76 53.6382.87 153.2335.00Norfloxacin

74.7645.00 166.14 43.89 97.53PenicillinV
Etoposide 50.00 100.00 51.65 103.3050.00

141.25 79.6270.63 159.2450.00Atenolol
166.67 70.32Ziprasidone 117.2060.00 100.00
137.98 65.9089.68 101.38Sulfasalazine 65.00

69.6767.00 103.98 62.08 92.66Hydrochlorothiazide
118.87 74.7689.15 99.6875.00Sumatriptan

100.0075.00 133.33 85.03 113.37Guanabenz
122.37 100.00Propylthiouracil 133.3375.00 91.78
125.00 95.07100.00 118.84Quinidine 80.00
120.83 100.00Acetaminophen 125.0080.00 96.66
117.71 95.8696.52 116.90Methylprednisolone 82.00

80.7782.00 98.50 99.56 121.41Sorivudine
100.00 83.0587.00 95.4687.00Bupropion

100.0088.00 113.64 95.12 108.09Trovafloxacin
88.00 98.79 112.26 100.00 113.64Acrivastine

82.87 93.0274.17 103.93Acebutolol 89.50
89.98 77.43Timolol maleate 86.0390.00 80.99

110.75 91.7999.68 101.99Phenytoin 90.00
77.3890.00 85.98 95.10 105.67Betaxolol

93.64 95.3584.27 105.9490.00Oxprenolol
100.0090.00 111.11 95.58 106.20Scopolamine

110.33 95.77Propranolol 106.4190.00 99.30
111.11 96.78100.00 107.53Tenidap 90.00
108.07 100.00Chloramphenicol 111.1190.00 97.26
101.13 93.8792.03 103.15Terazosin 91.00

85.3191.00 93.75 96.30 105.82Hydrocortizone
74.61 88.8269.76 94.9993.50Amoxicillin

96.1895.00 101.24 89.66 94.38Fluconasole
79.34 90.89Metoprolol 95.6795.00 75.37
86.50 91.5382.17 96.3595.00Sotalol

102.99 96.02Clonidine 101.0795.00 97.84
101.66 96.3096.57 101.37Imipramine 95.00

89.8995.00 94.62 100.00 105.26Labetalol
96.05 93.3493.17 96.2397.00Trimethoprim

76.9898.00 78.55 84.95 86.68Cephalexin
102.04 100.00Warfarin 102.0498.00 100.00

94.75 96.5092.86 98.47Prednisolone 98.00
97.44 100.00Naproxen 101.0199.00 96.46
66.97 74.7966.97 74.79Practolol 100.00

Loracerbef 77.08 77.08 78.23 78.23100.00
91.15 88.1391.15 88.13Flavustatin 100.00
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Table 4 (Continued)

Recovery GNN RecoveryIA(%) RBF

100.00 91.79100.00 91.79Antipyrine 100.00
Caffeine 91.48 91.48 92.02 92.02100.00

100.00 92.70Lormetazepam 92.70100.00 100.00
82.96 93.8982.96 93.89Bumetanide 100.00

96.80100.00 96.80 93.97 93.97Testosterone
88.60 94.14Corticosterone 94.14100.00 88.60
88.69 95.2988.69 95.29100.00Felodipine

95.27100.00 95.27 95.37 95.37Prazosin
95.66100.00 95.66 95.65 95.65Ondansetron

94.78 96.2494.78 96.24100.00Desipramine
96.35100.00 96.35 96.35 96.35Dexamethasone

93.86 97.14Ibuprofen 97.14100.00 93.86
95.91 98.6195.91 98.61100.00Valproic acid

94.01100.00 94.01 100.00 100.00Aspirin
96.93100.00 96.93 100.00 100.00Ketoprofen

100.00 100.00100.00 100.00Zidovudine 100.00
4.8910.00 48.94 47.68 476.80Enalapril

51.3634.00 151.05 41.06 120.76Pravastatin
156.84 76.5678.42 153.12Ranitidine 50.00
100.00Furosemide 89.2561.00 146.3161.00
141.34 87.2798.94 124.67Lamotrigine 70.00

100.0084.00 119.05 87.38 104.02Bromazepam
96.48 95.11Pindolol 105.6890.00 86.83

100.00 86.70100.00 86.70100.00Diazepam
97.31100.00 97.31 100.00 100.00Methotrexate

107.93 109.68Average
37.76 49.85S.D.

Validation data set
Doxorubicin 5.00 100.00 0.00 0.005.00

73.06 0.0018.26 0.00Lisinopril 25.00
100.00 9.76 9.76Cefuroxime axetil 36.00 36.00
164.49 51.3682.25 31.2250.00Gabapentin

68.2367.00 101.84 100.00 98.19Captopril
90.20 73.98Cefatrizin 82.0276.00 68.55
77.02 76.5365.47 99.3685.00Cimetidine

96.8791.00 106.45 93.99 88.30Progesterone
Alprenolol 101.0993.00 95.95 94.9194.02

91.28 100.0091.28 109.55Salicylicacid 100.00
100.54 61.33Average

S.D. 25.01 45.34

* Cannot be calculated.
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